Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.139
Filtrar
1.
ACS Infect Dis ; 10(4): 1097-1115, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38564341

RESUMO

Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.


Assuntos
DNA Topoisomerase IV , Mycobacterium tuberculosis , DNA Topoisomerase IV/genética , Fluoroquinolonas/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , DNA/metabolismo , Mycobacterium tuberculosis/genética
2.
J Hazard Mater ; 470: 133740, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569335

RESUMO

The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.


Assuntos
Antibacterianos , Biodegradação Ambiental , Microbiota , Norfloxacino , Poluentes Químicos da Água , Áreas Alagadas , Antibacterianos/farmacologia , Poluentes Químicos da Água/metabolismo , Norfloxacino/farmacologia , Microbiota/efeitos dos fármacos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/genética , Resistência Microbiana a Medicamentos/genética , Ofloxacino , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Genes Bacterianos , Fluoroquinolonas/metabolismo
3.
Antibiotics (Basel) ; 13(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667054

RESUMO

BACKGROUND: Isoniazid-resistant, rifampicin-susceptible tuberculosis (Hr-TB) is the most frequent drug-resistant tuberculosis (DR-TB) in the world, and unfavorable outcomes of Hr-TB are more common compared to drug-susceptible TB. Considering there is no optimal regimen accepted worldwide, we undertook a retrospective cohort study in eastern China to estimate incidence trends and risk factors associated with unfavorable outcomes of Hr-TB. METHODS: Between January 2012 and December 2022, all Hr-TB patients' information was extracted from the Tuberculosis Information Management System (TIMS), which is a national electronic information platform, to record TB patients' clinical information in this study. The incidence of Hr-TB was determined by the mid-year population according to census data published by the government. We categorized treatment regimens depending on fluoroquinolone (FQ) use, and potential risk factors were analyzed using multivariable logistic regression. RESULTS: A total of 3116 Hr-TB patients fulfilled the inclusion criteria and were enrolled in this study. The average annual rate of Hr-TB in the 11 years under investigation was 0.34 per 100,000 and increased to 0.53 per 100,000 until 2019. In total, six different treatment regimens were utilized in the study sites, and less than 1% of regimens adopted FQ. There was no difference in the unfavorable outcomes between the FQ-included and FQ-excluded groups (p = 0.22). The average treatment duration was 7.06 months, and the longest treatment was 26 months. Approximately 20% (637/3116) of Hr-TB patients had unfavorable outcomes, and 60.13% (383/637) of them proceeded to multidrug-resistant tuberculosis (MDR-TB). Treatment duration and a positive smear at the end of the 5th month were significantly associated with unfavorable outcomes (p < 0.001). CONCLUSION: The unfavorable treatment outcomes of Hr-TB are still high in eastern China, and the efficacy of FQ-containing regimens needs to be validated for Hr-TB treatment.

4.
Pathogens ; 13(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668255

RESUMO

Bovine respiratory disease (BRD) is the leading cause of mortality and antimicrobial drug (AMD) use in weaned dairy heifers. Limited information is available regarding antimicrobial resistance (AMR) in respiratory bacteria in this population. This study determined AMR gene presence in 326 respiratory isolates (Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni) from weaned dairy heifers using whole genome sequencing. Concordance between AMR genotype and phenotype was determined. Twenty-six AMR genes for 8 broad classes of AMD were identified. The most prevalent, medically important AMD classes used in calf rearing, to which these genes predict AMR among study isolates were tetracycline (95%), aminoglycoside (94%), sulfonamide (94%), beta-lactam (77%), phenicol (50%), and macrolide (44%). The co-occurrence of AMR genes within an isolate was common; the largest cluster of gene co-occurrence encodes AMR to phenicol, macrolide, elfamycin, ß-lactam (cephalosporin, penam cephamycin), aminoglycoside, tetracycline, and sulfonamide class AMD. Concordance between genotype and phenotype varied (Matthew's Correlation Coefficient ranged from -0.57 to 1) by bacterial species, gene, and AMD tested, and was particularly poor for fluoroquinolones (no AMR genes detected) and ceftiofur (no phenotypic AMR classified while AMR genes present). These findings suggest a high genetic potential for AMR in weaned dairy heifers; preventing BRD and decreasing AMD reliance may be important in this population.

5.
Cureus ; 16(2): e55251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558603

RESUMO

Background In cirrhotic patients with ascites, primary prevention of spontaneous bacterial peritonitis (SBP) is a key strategy to lower morbidity and death. Rifaximin and fluoroquinolone used alternately as main prophylaxis are as effective as reported. This study aimed to compare the frequency of occurrence of SBP in patients with decompensated chronic liver disease treated with rifaximin alone and in combination with fluoroquinolone. Methodology A total of 76 patients with hepatitis C virus-related decompensated chronic liver disease and ascites were divided into two groups based on matching age, sex, and Child-Pugh class. Group A (38 patients) received rifaximin 1,100 mg/day in two divided doses with daily fluoroquinolone 400 mg/day, whereas group B (38 patients) received rifaximin 1,100 mg/day alone as a two dosage. The patients were monitored for up to three months. The study's endpoints were SBP, hepatocellular carcinoma, compliance failure, death, or liver transplantation. Results In this comparative study involving 76 patients, the demographic and clinical characteristics were assessed across two treatment groups: rifaximin alone (n = 38) and rifaximin with fluoroquinolone (n = 38). The combination therapy demonstrated a statistically significant reduction in SBP compared to rifaximin alone. Additionally, the overall survival rate was higher in the combination group. These findings suggest potential benefits of the combined approach in managing hepatic encephalopathy-related complications. Conclusions When compared to rifaximin alone for primary SBP prophylaxis, the combination of rifaximin with fluoroquinolone exhibited greater effectiveness with the same safety profile.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38575819

RESUMO

Antibiotics have been widely detected in aquatic environments, and fungal biotransformation receives considerable attention for antibiotic bioremediation. Here, a fungus designated Cladosporium cladosporioides 11 (CC11) with effective capacity to biotransform fluoroquinolones was isolated from aquaculture pond sediments. Enrofloxacin (ENR), ciprofloxacin (CIP) and ofloxacin (OFL) were considerably abated by CC11, and the antibacterial activities of the fluoroquinolones reduced significantly after CC11 treatment. Transcriptome analysis showed the removal of ENR, CIP and OFL by CC11 is a process of enzymatic degradation and biosorption which consists well with ligninolytic enzyme activities and sorption experiments under the same conditions. Additionally, CC11 significantly removed ENR in zebrafish culture water and reduced the residue of ENR in zebrafish. All these results evidenced the potential of CC11 as a novel environmentally friendly process for the removal of fluoroquinolones from aqueous systems and reduce fluoroquinolone residues in aquatic organisms.

7.
Postgrad Med ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658366

RESUMO

OBJECTIVES: This study aimed to assess whether superior clinical outcomes can be attained through piperacillin/tazobactam (TZP)+fluoroquinolone (FQ) combination therapy for severe community-acquired pneumonia (CAP) compared to TZP monotherapy. METHODS: This retrospective study was conducted at a tertiary care hospital in Korea. Adult inpatients diagnosed with pneumonia within 48 hours of hospitalization were included. Severe CAP was defined as a CURB-65 score of ≥ 3 or based on the 2007 guidelines of the Infectious Diseases Society of America/American Thoracic Society (IDSA/ATS) definition. Only patients who received either TZP and FQ combination or TZP as initial empirical therapy were included. RESULTS: The final analysis included 145 patients; 57.9% received combination therapy and 42.1% received monotherapy. In the combination therapy group, body mass index (20.67 ± 3.28 vs. 22.26 ± 4.80, p = 0.030) and asthma prevalence (0 vs 8.3%, p = 0.022) were significantly higher; initial symptoms, clinical severity, and causative pathogens were not significantly different between groups. White blood cell counts (12,641.64 ± 6,544.66 vs. 12491.67 ± 10,528.24, p = 0.008), and C-reactive protein levels (18.78 ± 11.47 vs. 26.58 ± 14.97, p < 0.001) were significantly higher in the combination therapy group. Clinical outcomes, including all-cause in-hospital mortality rate (26.2 vs. 33.3%, p = 0.358), were not significantly different between the groups. Multivariate analysis identified no significant association between FQ combination and all-cause in-hospital mortality. CONCLUSION: In patients with severe CAP, there were no differences in the clinical outcomes, including mortality, between the TZP and FQ combination therapy and TZP monotherapy. FQ combination was not significantly associated with in-hospital mortality.

8.
ACS Infect Dis ; 10(4): 1351-1360, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606464

RESUMO

Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.


Assuntos
Ciprofloxacina , Gonorreia , Humanos , Ciprofloxacina/farmacologia , Fluoroquinolonas/farmacologia , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , Neisseria gonorrhoeae , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , DNA Girase/genética , DNA Girase/metabolismo , Testes de Sensibilidade Microbiana
9.
Data Brief ; 54: 110344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586145

RESUMO

Multidrug-resistant Pseudomonas aeruginosa WO7 was isolated from an untreated water sample from a hospital wastewater treatment plant in Thailand. This report presents the draft genome sequence data of P. aeruginosa WO7. Genomic DNA was obtained from a pure culture of P. aeruginosa WO7, and paired-end reads were generated using an Illumina MiSeq sequencer. The draft genome consisted of 111 contigs with a total size of 6,784,206 base pairs, an N50 of 209,424 base pairs, and a GC content of 65.85%. The dDDH value between WO7 and Pseudomonas aeruginosa DSM 50071T was determined to be 90.7%, indicating that the strain is Pseudomonas aeruginosa. The data presented indicate the potential for bacterial classification, comparative genomics, comprehensive analysis of antimicrobial resistance, and assessment of bacterial virulence factors in P. aeruginosa. The draft genome sequence data have been deposited at the NCBI under Bioproject accession number PRJNA550309.

10.
Front Microbiol ; 15: 1377047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601931

RESUMO

Sewer biofilms are likely to constitute hotspots for selecting and accumulating antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study aimed to optimize culture conditions to obtain in vitro biofilms, mimicking the biofilm collected in sewers, to study the impact of fluoroquinolones (FQs) on sewer biofilm microbiota. Biofilms were grown on coupons in CDC Biofilm Reactors®, continuously fed with nutrients and inoculum (1/100 diluted wastewater). Different culture conditions were tested: (i) initial inoculum: diluted wastewater with or without sewer biofilm, (ii) coupon material: concrete vs. polycarbonate, and (iii) time of culture: 7 versus 14 days. This study found that the biomass was highest when in vitro biofilms were formed on concrete coupons. The biofilm taxonomic diversity was not affected by adding sewer biofilm to the initial inoculum nor by the coupon material. Pseudomonadales, Burkholderiales and Enterobacterales dominated in the sewer biofilm composition, whereas in vitro biofilms were mainly composed of Enterobacterales. The relative abundance of qnrA, B, D and S genes was higher in in vitro biofilms than sewer biofilm. The resistome of sewer biofilm showed the highest Shannon diversity index compared to wastewater and in vitro biofilms. A PCoA analysis showed differentiation of samples according to the nature of the sample, and a Procrustes analysis showed that the ARG changes observed were linked to changes in the microbial community. The following growing conditions were selected for in vitro biofilms: concrete coupons, initial inoculation with sewer biofilm, and a culture duration of 14 days. Then, biofilms were established under high and low concentrations of FQs to validate our in vitro biofilm model. Fluoroquinolone exposure had no significant impact on the abundance of qnr genes, but high concentration exposure increased the proportion of mutations in gyrA (codons S83L and D87N) and parC (codon S80I). In conclusion, this study allowed the determination of the culture conditions to develop an in vitro model of sewer biofilm; and was successfully used to investigate the impact of FQs on sewer microbiota. In the future, this setup could be used to clarify the role of sewer biofilms in disseminating resistance to FQs in the environment.

11.
Mol Pharm ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662637

RESUMO

Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.

12.
Int Urol Nephrol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448785

RESUMO

PURPOSE: To evaluate the benefit of targeted antibiotic prophylaxis (TAP) based on rectal swab culture in comparison with standard empiric antimicrobial prophylaxis in patients undergoing transrectal ultrasound-guided needle biopsy of the prostate (TRUS-BP), as well as to assess rate of fecal carriage of Fluoroquinolone-resistant Enterobacterales FQRE. PATIENTS AND METHODS: We prospectively analyzed data that randomized 157 patients within two groups: (G1) TAP according to rectal swab performed 10 days before PB; (G2): empirical antibiotic prophylaxis with ciprofloxacin. Prevalence of FQRE digestive carriage and risk factors were investigated. Incidence of infectious complications after (TRUS-BP) in each group was compared. RESULTS: G2 included 80 patients versus 77 in G1. There was no difference between the two groups regarding age, diabetes, prostate volume, PSA, number of biopsy cores, and risk factors for FQRE. In G2, the prevalence of FQRE digestive carriage was 56.3% all related to E. coli species. In the case of digestive carriage of FQRE, TAP according to the rectal swab culture with third-generation cephalosporins was performed in 73.3%. Patients with FQRE had history of FQ use within the last 6 months in 17.8% (p = 0.03). Rate of febrile urinary tract infection after PB was 13% in G1 and 3.8% in G2 (p = 0.02). CONCLUSIONS: Incidence of FQ resistance in the intestinal flora of our local population was prevalent. Risk factor for resistance was the use of FQ within the last 6 months. TAP adapted to rectal swab, mainly with third-generation cephalosporins, significantly reduced the rate of infectious complications after (TRUS-BP).

13.
Infect Drug Resist ; 17: 911-918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476768

RESUMO

Background: Lascufloxacin (LSFX), a novel fluoroquinolone antibacterial agent, has recently been used as a drip infusion for treating pneumonia, apparently with good effectiveness against various bacteria, including anaerobes, and good intrapulmonary penetration. Methods: The clinical effectiveness of LSFX was retrospectively investigated for the 55 patients admitted to our hospital with pneumonia, including chronic lung disease exacerbations and lung abscesses, from May 2021 to July 2023. Results: The median age of the 55 patients was 76.1 (34.1-93.1) years, 45 (81.8%) were male, and 48 (87.5%) patients had underlying disease. Community-acquired pneumonia was seen in 47 (85.5%) patients, including 9 (16.4%) with lung abscess, and the other 8 (14.5%) had nursing and healthcare-associated pneumonia/hospital-acquired pneumonia. Moderate pneumonia was present in 33 (61.8%) of 55 patients, and LSFX was used as a second-line treatment for 28 (50.9%) patients in whom first-line antibiotics were ineffective. The median duration of intravenous LSFX administration was 9 (2.0-49) days. Streptococcus pneumoniae and methicillin-susceptible Staphylococcus aureus were isolated from 3 (7.1%) and 2 (4.8%) patients, respectively. Of the 55 patients, 45 (81.5%) improved clinically with intravenous LSFX administration; 20 (95.2%) of 21 community-acquired pneumonia cases, including 9 (100.0%) of 9 bacterial pneumonia cases, were improved by LSFX as first-line treatment, and 8 (88.9%) of 9 lung abscess patients also showed clinical improvement with LSFX as a second-line treatment. There were no severe adverse effects in any of the 55 patients. Conclusion: Based on these data, intravenous administration of LSFX seems effective for bacterial pneumonia, including chronic lung disease exacerbations and lung abscesses, and it appears to have broad antimicrobial activity and good tissue penetration into the lung.

14.
Food Chem ; 447: 138867, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447237

RESUMO

Fluoroquinolones (FQs) are a category of broadly used antibiotics. Development of an effective and sensitive approach for determination of trace FQs in environmental and food samples is still challenging. Herein, the hydroxyl-containing triazine-based conjugated microporous polymers (CMPs-OH) was constructed and served as SPE absorbent for the efficient enrichment of FQs. Based on DFT simulations, the excellent enrichment capacity between CMPs-OH and FQs was contributed by hydrogen bonding and π-π interactions. In combination with high-performance liquid chromatography-tandem mass spectrometry, the proposed approach exhibited a wide linear range (0.2-400 ng L-1), low detection limits (0.05-0.15 ng L-1), and good intraday and interday precisions under optimal conditions. In addition, the established method was effectively utilized for the determination of FQs in fourteen samples with recoveries between 82.6 % and 109.2 %. This work provided a feasible sample pretreatment method for monitoring FQs in environmental and food matrices.


Assuntos
Polímeros , Poluentes Químicos da Água , Polímeros/química , Poluentes Químicos da Água/análise , Fluoroquinolonas/análise , Antibacterianos/análise , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida/métodos
15.
Chemosphere ; 354: 141640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492681

RESUMO

In the fascinating realm of water purification, our study unveils the remarkable potential of a cutting-edge nano-scale adsorbent-combining graphene oxide (GO), chitosan (CS), and polydopamine (PDA)-in efficiently remove ciprofloxacin (CPF) and ofloxacin (OFL) from aqueous solutions. Our exploration delves deep into the adsorbent's character, utilizing a range of analytical techniques including SEM, RAMAN, FTIR, TGA, BET, XRD, and Zeta potential analyses provided insights into the adsorbent's properties. Modeling the adsorption process with Response Surface Methodology (RSM), Artificial Neural Network (ANN) and General Regression Neural Network (GRNN) indicated excellent predictions by GRNN, with RMSE = 0.0200 and 0.0166, MAE = 0.0082 and 0.0092, as well as AAD = 0.0002 and 0.0006, highlighting its modeling power. Optimization using genetic algorithm (GA) revealed maximum CPF removal efficiency of approximately 95.20% under pH = 6.3, sonication time = 9.0 min, adsorbent dosage = 2.10 g L⁻1, temperature = 45 °C and initial CPF concentration = 90.0 mg L⁻1. Similarly, OFL removal reached about 95.50% under pH = 6.30, sonication time = 8.0 min, adsorbent dosage = 2.0 g L⁻1, temperature = 45 °C and OFL concentration = 115.0 mg L⁻1. RSM optimization closely aligned with GA results. Pseudo-second-order (PSO) kinetic model and Langmuir isotherm model best fitted the experimental data for both antibiotics. Thermodynamic analysis indicated a favorable and spontaneous adsorption process for CPF and OFL. The study concludes that the proposed adsorbents show effectiveness in removing CPF and OFL at lower doses and shorter sonication times compared to various reported adsorbents.


Assuntos
Ofloxacino , Poluentes Químicos da Água , Ciprofloxacina , Termodinâmica , Temperatura , Água , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
16.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540787

RESUMO

Laccases are industrially relevant enzymes that have gained great biotechnological importance. To date, most are of fungal and mesophilic origin; however, enzymes from extremophiles possess an even greater potential to withstand industrial conditions. In this study, we evaluate the potential of a recombinant spore-coat laccase from the thermoalkaliphilic bacterium Bacillus sp. FNT (FNTL) to biodegrade antibiotics from the tetracycline, ß-lactams, and fluoroquinolone families. This extremozyme was previously characterized as being thermostable and highly active in a wide range of temperatures (20-90 °C) and very versatile towards several structurally different substrates, including recalcitrant environmental pollutants such as PAHs and synthetic dyes. First, molecular docking analyses were employed for initial ligand affinity screening in the modeled active site of FNTL. Then, the in silico findings were experimentally tested with four highly consumed antibiotics, representatives of each family: tetracycline, oxytetracycline, amoxicillin, and ciprofloxacin. HPLC results indicate that FNTL with help of the natural redox mediator acetosyringone, can efficiently biodegrade 91, 90, and 82% of tetracycline (0.5 mg mL-1) in 24 h at 40, 30, and 20 °C, respectively, with no apparent ecotoxicity of the products on E. coli and B. subtilis. These results complement our previous studies, highlighting the potential of this extremozyme for application in wastewater bioremediation.


Assuntos
Bacillus , Lacase , Humanos , Lacase/metabolismo , Bacillus/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Biodegradação Ambiental , Simulação de Acoplamento Molecular , Tetraciclina
18.
Anim Biotechnol ; 35(1): 2322541, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38478400

RESUMO

Different antibiotics are used to treat mastitis in dairy cows that is caused by Escherichia coli (E. coli). Antimicrobial resistance in food-producing animals in China has been monitored since 2000. Surveillance data have shown that the prevalence of multiresistant E. coli in animals has increased significantly. This study aimed to investigate the occurrence and molecular characteristics of resistance determinants in E. coli strains (n = 105) obtained from lactating cows with clinical bovine mastitis (CBM) in China. A total of 220 cows with clinical mastitis, which has swollen mammary udder with reduced and red or gangrenous milk, were selected from 5000 cows. The results showed 94.3% of the isolates were recognized as multidrug resistant. The isolates (30.5%) were positive for the class I integrase gene along with seven gene cassettes that were accountable for resistance to trimethoprim resistance (dfrA17, dfr2d and dfrA1), aminoglycosides resistance (aadA1 and aadA5) and chloramphenicol resistance (catB3 and catB2), respectively. The blaTEM gene was present in all the isolates, and these carried the blaCTX gene. A double mutation in gyrA (i.e., Ser83Leu and Asp87Asn) was observed in all fluoroquinolone-resistant isolates. In total, nine fluoroquinolone-resistant E. coli isolates were identified with five different types of mutations in parC. In four (44.4%) isolates, Ser458Ala was present in parE, and in all nine (9/9) fluoroquinolone-resistant isolates, Pro385Ala was present in gyrB. Meanwhile, fluoroquinolone was observed as highly resistant, especially in isolates with gyrA and parC mutations. In summary, the findings of this research recognize the fluoroquinolone resistance mechanism and disclose integron prevalence and ESBLs in E. coli isolates from lactating cattle with CBM.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Mastite Bovina , Feminino , Animais , Bovinos , Escherichia coli/genética , Mastite Bovina/epidemiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Lactação , Prevalência , Antibacterianos/farmacologia , China/epidemiologia , Fluoroquinolonas/uso terapêutico
19.
Biosens Bioelectron ; 254: 116205, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484411

RESUMO

In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the ß-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 µM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Animais , Fluoroquinolonas , Térbio/química , Carbono/química , Polímeros/química , Reprodutibilidade dos Testes , Pontos Quânticos/química , Corantes Fluorescentes/química
20.
Mol Biol Rep ; 51(1): 424, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491992

RESUMO

BACKGROUND: There has been a rise in the consumption of fluoroquinolones in human and veterinary medicine recently. This has contributed to the rising incidence of quinolone resistance in bacteria. This study aimed at the determination of the antibiotic resistance profile of ESBL-producing and fluoroquinolone-resistant E. coli (FQEC) isolated from animal waste obtained from the waste dumps of an agricultural farm and their carriage of genes encoding PMQR. METHODS AND RESULTS: Isolation of ESBL-producing E. coli from animal waste samples was done on CHROMagar ESBL, while presumptive isolates were purified, and identified via the detection of uidA gene. Susceptibility to a panel of ten antibiotics was done using the disc diffusion method, and detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was done using monoplex and duplex PCR. Twenty-five ESBL-producing and FQEC were obtained from the cattle (6), piggery (7) and poultry (12) waste dumps of the farm. There was 100% resistance to cefpodoxime, cefotaxime, enrofloxacin, trimethoprim-sulfamethoxazole and penicillin by the isolates. The resistance to the other antibiotics was streptomycin (48%), ceftazidime (24%), while no isolate resisted amoxicillin-clavulanate and imipenem. The frequencies of PMQR genes detected were; qnrA (96%), oqxAB (96%), qnrB (92%), while  qnrS was detected in 88% (22) of the isolates. Aminoglycoside acetyltransferase (aac(6')-lb-cr) and quinolone efflux pump (qepA) were each detected in 20 (80%) of the isolates. CONCLUSIONS: This study showed that animal wastes disposed indiscriminately into dumps could be a budding 'hotspot' for multidrug resistant, ESBL-producing and fluoroquinolone-resistant E. coli carrying multiple genes encoding resistance to fluoroquinolone antibiotics.


Assuntos
Escherichia coli , Quinolonas , Humanos , Animais , Bovinos , Quinolonas/farmacologia , Fluoroquinolonas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...